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Revision of Spin Echoes in Pure Nuclear Quadrupole Resonance
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Goldman’s spin-1/2 formalism has been used for describing the
response of an I = 3/2 spin system to a two-pulse sequence in a
pure nuclear quadrupole resonance experiment. A detailed analy-
sis of the polarization evolution and quadrupolar echo generation
is carried out through the use of explicit expressions for secular
homo- and heteronuclear dipolar interactions. In striking contrast
with previous studies, it is predicted that Van Vleck’s second mo-
ments governing a classical solid-echo or Hahn sequence differ from
those obtained by equivalent means in magnetic resonance. In fact,
it is shown that, although measured moments still complement each
other, the combined use of standard sequences does not allow the
separate determination of homo- and heteronuclear dipolar con-
tributions to the linewidth, not even in an indirect manner. In this
context, the importance and potential usefulness of a crossed coil
probe are also briefly discussed. C© 2001 Academic Press
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INTRODUCTION

Over several years, the analytic study of the response s
of an interacting nuclear quadrupolar system to a radiofreque
pulse has been delayed, largely due to the absence of a fo
ism capable of describing the problem in an appropriate man
In 1977, Pratt (1) proposed a scheme for describing anI = 3/2
system which was based on a triad of spin operators sat
ing conmutation rules similar to those valid for the Cartes
components of the angular momentum. In strong analogy to
situation found in magnetic resonance, this formalism allows
interaction representation, which facilitates the description
the density matrix evolution during the rf irradiation. Howev
the contribution due to the secular dipolar Hamiltonian can
be entirely expressed as a function of these operators and
systematically led to an incorrect description of the echo
nal following a pulse sequence in a pure nuclear quadru
resonance experiment (2).

In this study, Goldman’s spin-1/2 formalism (3) has been used
to characterize the complex homo- and heteronuclear dip
interactions governing the evolution of anI = 3/2 nuclear spin
system after an rf pulse. On this basis, the generation and gra
decay of the echo following a standard pulse sequence wi
discussed.
1 Present address: Department of Chemistry, University of Californ
Berkeley, CA. he
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THEORY

(i) Quadrupolar Interaction

The Hamiltonian describing anI > 1/2 spin ensamble in th
presence of quadrupolar couplings has the form

HQ = ωQ

2

∑
i

(
I 2
zi −

1

3
I (I + 1)

)
; ωQ = 3e2q Q

2I (2I − 1)
. [1]

In this expression, the existence of a unique electric field grad
direction has been assumed and a laboratory reference s
coinciding with the principal axes of the gradient tensor
been chosen. For simplicity’s sake, an axially symmetric cha
distribution around the nucleus of interest has been impos
situation often found in practical35Cl or 79Br spectroscopy.

Given the strong versatility of the Pauli matrices, it will
useful to express the angular momentum operators in term
the base of Table 1. Each matrix matches the representati
the Cartesian components of individual angular momenta
system of two virtual spin-1/2 nuclei. By a simple calculation
it is shown that

2Iz = 2z1+ z2

2Ix =
√

3x2+ x1x2+ y1y2

2I y =
√

3y2+ y1x2− x1y2.

[2]

Using these relations, one finds

HQ = ωQ

2

∑
k

z1kz2k. [3]

The formal complexity of the quadrupolar Hamiltonian c
be considerably reduced by noting that the expectation valu
any observableQ remains unchanged if all relevant operat
are replaced by those obtained after performing a uni
transformationU , i.e.,

〈Q〉 = Tr{Qe−i Htσei Ht }
= Tr{U QU†e−iU HU †tUσU †eiU HU †t }. [4]

From a purely formal point of view, this relation implies that t
8
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TABLE 1
Matrix Representations of Individual Pauli Operators and Useful Properties

Pauli operators

z1 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , x1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , y1 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0



z2 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , x2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , y2 =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


Some useful properties

For j = 1, 2→ [zj , xj ] = 2iy j and cyclic permutations

For k 6= j → [zj , zk] = 0, [zj , xk] = 0, [zj , yk] = 0, etc.

For j = 1, 2→ zj x j = iy j and cyclic permutations

For j = 1, 2→ z2
j = x2

j = y2
j = 1
Finally, Tr{uklv j l ′ } = δuvδk j δll ′ Tr{1} for u, v = x, y, z; k, j = 1, 2; l , l ′ = 1 . . . NI

f

r-

nt

m-
, as
Note. NI represents the total number of resonant spins.

real system may be described using a virtual representatio
which the HamiltonianH and the density matrixσ have been
replaced through the correspondenceH → U HU † andσ →
UσU †. As will be shown below, the transformation defined b

U = U † =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 [5]

will be of particular use. After an elementary calculation, t
following correspondence is found

z1 → z1z2, z2→ z2

x1→ x1, x2→ x1x2

y1→ y1z2, y2→ x1y2.

[6]

According to Eqs. [2] and [3], it follows that

HQ → 1

2
ωQ

∑
k

z1k, 2Ixk→
√

3x1kx2k+ x2k− z1kx2k

[7]
2Izk→ 2z1kz2k+ z2k, 2I yk→

√
3x1ky2k− y2k+ z1ky2k.

In this scheme, the quadrupolar Hamiltonian is found to be
mally equivalent to a Zeeman Hamiltonian depending on
virtual particle (1). Furthermore, sincez1 is a Pauli operator, the

level spacing is constant and equal toωQ. This fact, as shown
immediately below, will be of great utility for identifying the
secular part of the dipolar Hamiltonian.
n in

y

he

or-
the

(ii) Dipolar Interaction

The standard form for the dipolar Hamiltonian is

HD = 1

2

∑
k 6=l

2∑
q=−2

F (q)
kl A(q)

kl . [8]

The functionF (q)
kl describes the orientation andA(q)

kl contains the
spin operators:

A(0)
kl = bkl

{
IzkJzl− 1

4
(I +k J−l + I −k J+l )

}
, F (0)

kl =1−3 cos2 θkl

A(±1)
kl = −

3

2
bkl(IzkJ±l + I ±k Jzl), F (±1)

kl = sinθkl cosθkle
∓iφkl

A(±2)
kl = −

3

4
bkl I

±
k J±l , F (±2)

kl = sin2 θkle
∓i 2φkl

with

bkl = µoγkγl hÃ

4πr 3
kl

.

In the above expression,Jl represents a neighboring spin pe
taining either to the speciesI or to a different one,θkl is the an-
gle between the principal direction of the electric field gradie
(z axis) and the internuclear vectorrkl , andφkl is the azimuthal
angle with respect to thex axis.

If, as it will be assumed, the quadrupolar Hamiltonian is do
inant, the dipolar interaction represents a perturbation which
usual, leads to the mixing of the eigenstates ofHQ and induces

transitions which affect the otherwise free time evolution of
any generated spin coherence. In a resonance experiment, such
transitions promote two kinds of effects: on the one hand, they
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TABLE 2
Relevant Spin Operators in the Dipolar Hamiltonian Expressed as a Function of Spin-1/2 Operators

Homonuclear contributions

IzkIzl → 1
4(4z1kz1l + 2z1k + 2z1l + 1)z2kz2l

1
4(I +k I −l + I −k I +l )→ 1

42

{
(x+2kx−2l + x−2kx+2l )(z1kz1l − z1k − z1l + 1

+ 3
4(x+1kx−1l + x−1kx+1l )+ 3

4(x+1kx+1l + x−1kx−1l )
)+√3(x+2kx+2l + x−2kx−2l )(x1kz1l + z1kx1l − x1k − x1l )

}
(IzkI ±l + I ±k Izl)→ 1

4{−2(z2kx∓2l + x∓2kz2l )z1kz1l + (2z2kx∓2l − x∓2kz2l )z1k

+ (2x∓2kz2l − z2kx∓2l )z1l + z2kx∓2l + x∓2kz2l + 2
√

3(z1kx1l z2kx±2l + x1kz1l x
±
2kz2l )

+√3(x1l z2kx±2l + x1kx±2kz2l )}
I ±k I ±l → 1

4{z1kz1l x
∓
2kx∓2l − z1kx∓2kx∓2l − z1l x

∓
2kx∓2l + x∓2kx∓2l

−√3(z1kx1l x
∓
2kx±2l + x1kz1l x

±
2kx∓2l − x1kx±2kx∓2l − x1l x

∓
2kx±2l )

+ 3
4 x±2kx±2l (x

±
1kx∓1l + x∓1kx±1l )+ 3

4 x±2kx±2l (x
±
1kx±1l + x∓1kx∓1l )

}
Heteronuclear contributions

IzkSzl → 1
2(2z1kz2k + z2k)szl

1
4(I +k S−l + I −k S+l )→ 1

8(−z1k(x+2ks+l + x−2ks−l )+ (x+2ks+l + x−2ks−l )+√3x1k(x+2ks−l + x−2ks+l ))

IzkS±l + I ±k Szl → 1
2(z1k(2z2ks±l − x∓2kszl)+ (z2ks±l + x∓2kszl)+

√
3x1kx±2kszl)

√
± ± 1 ∓ ± ∓ ± ± ±

r
e

o

l

r
s

e

lear
ous
]

ular

c-

nt

on-
th
lk Sl → 2(−z1kx2ksl + x2ksl + 3xlk x2ksl )

Note.As in Eq. [7], an arrow has been used to indicate the underlying un

give rise to satellite lines (in this case, atωD ¿ ωQ); on the
other, they produce a broadening of the main resonance
usually known as “homogeneous.” This broadening arises f
transitions between different configurations of the spin ens
ble, which, nonetheless, do not alter the energy belonging to
reservoirHQ. This condition identifies the matrix elements
HD, which, as a whole, give rise to the so-called “secular” par
the dipolar HamiltonianH ′D. In the Heisemberg representatio
the time derivative ofHQ(t) = ei HtHQe−i Ht satisfies the relation

d

dt
HQ(t) = −i [HQ(t), H (t)]

= −iei Ht {[HQ, H ′D] + [HQ, H ′′D]}e−i Ht [9]

from which it is easily inferred that, by definition, the secu
dipolar Hamiltonian commutes withHQ, i.e.,

[HQ, H ′D] = 0. [10]

Giving rise to repeated misinterpretations, this result sho
be used with care: if any term of the dipolar interaction se
(Eq. [8]) does not commute withHQ, it can only be stated that it
contribution to the nonsecular dipolar Hamiltonian differs fro
zero. On the other hand, nothing can be said with regard to
secular contribution which, in a second stage, should arise fro
careful analysis of all matrix elements. The situation is simpl
nuclear magnetic resonance where, as a result of the particuIz
dependence of the (dominant Zeeman) Hamiltonian, all term
HD (Eq. [8]) which do not commute withHZ can be disregarded
as entirely nonsecular. This result should, however, be exten
itary transformation (see text). On the other hand,x± = x ± iy.

line
om
m-
the
f

t of
n,

ar
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m
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to nuclear quadrupole resonance if all homo- and heteronuc
dipolar interactions are represented by means of the previ
section formalism. A list containing all dipolar terms in Eq. [8
expressed as a combination of (transformed) 1/2 spin operators
has been included in Table 2: all secular as well as nonsec
contributions toHQ can be easily detected.

As a useful example for understanding the origin of se
ular parts in quadrupolar resonance, terms likeF (±2)

kl I ±k I ±l
in Eq. [8] should be considered: matrix elements differe
from zero link two spin states (±3/2,±3/2)↔ (±1/2,±1/2),
(±3/2,±1/2) ↔ (±1/2,∓1/2), (±1/2,±3/2) ↔ (∓1/2,±
1/2), (±3/2,∓1/2) ↔ (±1/2,∓3/2), and (±1/2,±1/2) ↔
(∓1/2,∓1/2). Due to the inherent degeneracy ofHQ, dipo-
lar transitions between (±3/2,∓1/2) ↔ (±1/2,∓3/2) and
(±1/2,±1/2)↔ (∓1/2,∓1/2) do not alter the quadrupolar
Hamiltonian energy and, by this means, lead to secular c
tributions in H ′D (represented by those terms conmuting wi
z1 ≡

∑
z1k in Table 2). As a final remark, it is worth noting

that the operatorI +k I −l + I −k I +l is not completely secular2 since
[ I +k I −l + I −k I +l , HQ] 6= 0.

After disregarding nonsecular terms, it results that

H ′IID →
1

2

∑
k 6=l

{
h(1)

kl z1kz1l + h(2)
kl (x+1kx−1l + x−1kx+1l )

+ 2h(3)
kl z1k + h(4)

kl

}
, [11]
s in

ded
2 Flip-flop transitions like (±1/2,±1/2)↔ (±3/2,∓1/2) do alter the qua-

drupolar energy.
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where

h(1)
kl =

bkl

4

{
F (0)

kl

(
4z2kz2l − 1

4
(x+2kx−2l + x−2kx+2l )

)
+ 3F (1)

kl (z2kx−2l + x−2kz2l )+ 3F (−1)
kl (z2kx+2l + x+2kz2l )

− 3

4
F (2)

kl x−2kx−2l −
3

4
F (−2)

kl x+2kx+2l

}

h(2)
kl =

3

4

bkl

4

{
− F (0)

kl

4
(x+2kx−2l + x−2kx+2l )−

3

4
F (2)

kl x+2kx+2l

− 3

4
F (−2)

kl x−2kx−2l

}
h(3)

kl =
bkl

4

{
F (0)

kl

(
2z2kz2l + 1

4
(x+2kx−2l + x−2kx+2l )

)
− 3

2
F (1)

kl (2z2kx−2l − x−2kz2l )− 3

2
F (−1)

kl (2z2kx+2l − x+2kz2l )

+ 3

4
F (2)

kl x−2kx−2l +
3

4
F (−2)

kl x+2kx+2l

}
h(4)

kl =
bkl

4

{
F (0)

kl

(
z2kz2l − 1

4
(x+2kx−2l + x−2kx+2l )

)
− 3

2
F (1)

kl (z2kx−2l + x−2kz2l )− 3

2
F (−1)

kl (z2kx+2l + x+2kz2l )

− 3

4
F (2)

kl x−2kx−2l −
3

4
F (−2)

kl x+2kx+2l

}
.

Contributions due to unlike spins (without quadrupolar co
plings) give rise to the heteronuclear part

H ′I S
D →

∑
k,l

{
g(1)

kl z1k + g(2)
kl

}
[12]

with

g(1)
kl =

bkl

2

{
F (0)

kl

(
2z2kszl + 1

4
(x+2ks+l + x−2ks−l )

)
− 3

2
F (1)

kl (2z2ks+l − x−2kslz)− 3

2
F (−1)

kl (2z2ks−l − x+2kszl)

+ 3

4
F (2)

kl x−2ks+l +
3

4
F (−2)

kl x+2ks−l

}
g(2)

kl =
bkl

2

{
F (0)

kl

(
z2kszl − 1

4
(x+2ks+l + x−2ks−l )

)
− 3

2
F (1)

kl (z2ks+l + x−2kslz)− 3

2
F (−1)

kl (z2ks−l + x+2kszl)

− 3
F (2)

kl x−2ks+l −
3

F (−2)
kl x+2ks−l

}
,

4 4

the indexk(l ) running over the (non)resonant spins.
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(iii) rf Field: Rotating Frame

The presence of a radiofrequency radiation field is forma
described through the HamiltonianHrf = 2ωQ I X cosωt which,
in the above formalism, should be expressed by the relation

Hrf = 2ω1(pIx + q Iy + r I z) cosωt

→ω1

∑
k

(
√

3x1k(px2k + qy2k))

+ z1k(2rz2k + qy2k − px2k)

+ (rz2k − qy2k + px2k)) cosωt, [13]

with p,q, andr representing the direction cosines of the c
axis X with respect to the crystalline reference frame. T
evolution of the density matrixσ in the presence of rf ir-
radiation is usually described through the use of an inter
tion representation by defining (1) σ ∗ = exp(iωt

∑
(z1kz2k)/

2)σ exp(−iωt
∑

(z1kz2k)/2). Using the present formalismσ ∗

becomesσ ∗→ exp(iωz1t/2)UσU † exp(−iωz1t/2) which, in
turn, corresponds to the standard NMR “rotating-frame” p
ture. Now, assuming that all operators have been convenie
transformed, the following equation holds,

dσ ∗

dt
= −i

[
H∗ − z1ω

2
, σ ∗

]
= −i [H ′D + H∗rf , σ

∗], [14]

where, for simplicity’s sake, the rf irradiation has been assum
to be resonant. By this procedure, the rf HamiltonianH∗rf takes
on the form

H∗rf → ω1

∑
k

(√
3

2
λx1kx′2k(1+ cos 2ωt)

+
√

3

2
λy1kx′2k sin 2ωt

+ γ z1kz′2k cosωt + z′′2k cosωt

)
, [15]

where

x′2k =
1

λ
(px2k + qy2k); λ2 = p2+ q2

z′2k =
1

γ
(2rz2k − px2k + qy2k); γ 2 = (2r )2+ p2+ q2

z′′2k = rz2k + px2k − qy2k.

In the rotating reference frame, those terms varying with f
quencyω and 2ω do not induce appreciable effects and, f
this reason, only time-independent contributions inH∗rf should

be retained. Furthermore, since the electric field gradient at the
nucleus site has been assumed to be axially symmetric, the ref-
erence system may be chosen in a way thatq = 0 andp 6= 0. It
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TABLE 3
Laboratory- and Rotating-Frame Representations of Different rf

Hamiltonians in a Crossed Coil System

Coil p q Hr f H∗r f →

1 6=0 0 2ω1 cosωt
∑

k Ixk

√
3

2 pω1
∑

k x1kx2k

1 6=0 0 2ω1 sinωt
∑

k Ixk

√
3

2 pω1
∑

k y1kx2k

2 0 6=0 2ω1 cosωt
∑

k I yk

√
3

2 qω1
∑

k x1k y2k

2 0 6=0 2ω1 sinωt
∑

k I yk

√
3

2 qω1
∑

k y1k y2k

then follows that

H∗rf →
√

3

2
ω1 p

∑
k

x1kx2k. [16]

It is important to note that, even in the caseλ= 1 (principal
direction of the field gradient perpendicular to the coil axis)
90◦ phase-shifted rf pulse is physically different from that o
tained by means of a second coil perpendicular to the first
and irradiating in phase (p′ = 0,q′ = 1). This situation markedly
contrasts with that found in nuclear magnetic resonance
could be used for eventual applications: differences are
formal if one applies a unique pulse to a sample in therm
equilibrium but a second coil could be useful when deal
with coherences created after the first pulse. A list contain
four different operators related to either the first or the sec
coil and under different phase conditions has been include
Table 3. It is worth mentioning that, in the more general situ
tion 0< λ < 1, a similar “angular rotation” in both coils coul
be obtained by independently adjusting the rf field amplitu
until getting pω1 = q′ω′1. Furthermore, a simultaneous irradi
tion allows the combination of phases and amplitudes so a
change at will the “rotation axis” for operators only dependi
on one virtual particle. At least in part, these concepts will
used in the next section when the polarization evolution dur
a pulse sequence is described.

(iv) Polarization during a Two-Pulse Sequence: Echo Signa

If, maintaining calculations as simple as possible, the c
axis is oriented so as to obtainλ= p= 1, the resonance signa
following a rf–τ–rf pulse sequence should be proportional to

〈Ix〉(t) = Tr{I ∗x σ ∗(t)}, [17]

where

σ ∗(t) = e−i H ′Dt ′ Re−i H ′Dτ σ ∗(0+)ei H ′Dτ R†ei H ′Dt ′ → Uσ ∗(t)U †

∗ i
ωQ
2 z1z2t −i

ωQ
2 z1z2t 1 √
Ix = e Ixe →
2

( 3x1x2 cosωQt

−
√

3y1x2 sinωQt + x2− z1x2).
RILES
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b-
one
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In the above expression,σ ∗(0+) represents the density matrix
immediately after the first pulse andt ′ = t − τ indicates the
elapsed time since the second rf pulseR is applied; for brevity’s
sake, it has been writtenz1z2 ≡

∑
z1kz2k, y1x2 ≡

∑
y1kx2k,

etc. If the time separation between pulses is short enoug
power series expansion enablesσ ∗(t) to be rewritten as

σ ∗(t) =
{
σ̂ (0+)− it′[H ′D, σ̂ (0+)] − i τ [ Ĥ ′D, σ̂ (0+)]

− t ′2

2
[H ′D, [H

′
D, σ̂ (0+)]] − τ

2

2
[ Ĥ ′D, [ Ĥ

′
D, σ̂ (0+)]]

− t ′τ [H ′D, [ Ĥ
′
D, σ̂ (0+)]] + · · ·

}
[18]

with σ̂ = Rσ ∗R† and Ĥ ′D = RH′D R†. Assuming that before
the first pulse is applied the system is in thermal equilibriu
we write, as a shorthand notation,

σeq→ z1. [19]

After a (π/2)0 pulse, the density matrix takes on the form

σ (0+)→ e−i π4 x1x2z1ei π4 x1x2 = −y1x2, [20]

where, as usual, the conditionω1 À HD has been assumed
to hold. After combining expressions [17], [18], and [20], on
obtains

〈Ix〉(t) ∼= sin(ωQt)Tr{y1x2 ˆy1x2− it′H ′D[ ˆy1x2, y1x2]

− i τ Ĥ ′D[ ˆy1x2, y1x2] − t ′2

2
[H ′D, [H

′
D, ˆy1x2]] y1x2

− τ
2

2
[H ′D, [H

′
D, y1x2]] ˇy1x2

− t ′τ [H ′D, [ Ĥ
′
D, ˆy1x2]] y1x2}, [21]

where, as a brief notation, it has been defined̂y1x2 =
Ry1x2R†, ˇy1x2 = R†y1x2R, andH ′D represents the transforme
dipolar Hamiltonian (Eqs. [11] and [12]). Formula [21] describ
in a general manner the “in-phase” contribution to the resona
signal. Further features of the nuclear response should be
tained after defining the phase and length of the second p
R. Immediately below, two of the most popular echo pulse s
quences will be studied in detail.

Case I: Hahn-echo sequence((π/2)0–τ–(π )0–τ ). In this
case,R= exp(−iπx1x2/2), so that

〈Ix〉HE(t) = − sin(ωQt)Tr

{
(y1x2)2+ (t ′2+ τ 2)

2
[H ′D, y1x2]2

− t ′τ [H ′ , y x ]R[H ′ , y x ]R†
}
. [22]
D 1 2 D 1 2

A complete expression for [H ′D, y1x2] has been included in
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TABLE 4
Complete Expressions for the Homo- and Heteronuclear Part of the Conmutator [H ′D,Σy1 j x2 j ]

Homonuclear part[
H ′I I

D ,
∑

j y1 j x2 j
] =∑k 6=l

{
(Akl + Ckl )x1kz1l x2l + (Akl − Ckl )y1kz2k y2l

+ 3
2(Akl − Ckl + 4

3 Akl )y1k y2kz2l − 3
2(Akl + Ckl )z1kx1l x2l + 2Bkl z1kx2k y1l y2l

− 2Bkl x1kz2l + 2B′kl y1k y2k y2l − 2B′kl y1kz2kz2l + C′kl x1k y2l + C′kl z1kx2k y1l z2l }
+ ∑k 6=l

{
4Akl z1kz2k y1l y2l − (Akl + Ckl )x1kx2l − (Akl − Ckl )z1k y2k y1l z2l

− 4Bkl x1kz1l z2l − 2Bkl y1k y2kx2l − 2B′kl z1k y2k y1l y2l − 4B′kl z1kz2k y1l z2l

−C′kl y1kz2kx2l − C′kl x1kz1l y2l + 3
2C′kl z2k y1l x2l − 3

2C′kl z1kx1l y2l
}

where

Akl =
( ibkl

4

)
F (0)

kl

Bkl =
( ibkl

4

)( 3
2

)(
F (1)

kl + F (−1)
kl

)
, B′kl =

( ibkl
4

)( 3i
2

)(
F (1)

kl − F (−1)
kl

)
Ckl =

( ibkl
4

)( 3
2

)(
F (2)

kl + F (−2)
kl

)
, C′kl =

( ibkl
4

)( 3i
2

)(
F (2)

kl − F (−2)
kl

)
Heteronuclear part[

H ′D
I S
, y1x2

] = 2i
∑

k,l (Ãkl y1k y2k − B̃kl x1k + C̃kl y1kz2k)

where

Ãkl = bkl
2

{
F (0)

kl szl − 3
2

(
F (1)

kl + F (−1)
kl

)
sxl − 3i

2

(
F (1)

kl − F (−1)
kl

)
syl
}

B̃kl = bkl
2

{ F (0)
kl
2 sxl + 3

2

(
F (1)

kl + F (−1)
kl

)
szl + 3

4

(
F (2)

kl + F (−2)
kl

)
sxl + 3i

4

(
F (2)

kl − F (−2)
kl

)
syl }
+

o

o
,

i
h
e

t

ond

th,

are
ther
se,

c-

art
n
ith
C̃kl = bkl
2

{− F (0)
kl
2 syl − 3i

2

(
F (1)

kl − F (−1)
kl

)
szl

Table 4. Although the calculations in Eq. [22] seem to be e
tremely complex, crossed contributions to the trace coming fr
products of different termsTl D , Tl ′D in H ′D are always zero. This
fact immediately leads to the relation

R[Tl D , y1x2]R† = [Tl D , y1x2] [23]

as a condition for independently recognizing those contributi
to H ′D which are refocused att ′ = τ . According to these results
it is not difficult to show that the conmutator [H ′ I S

D , y1x2] sat-
isfies Eq. [23] and, from this, it follows that the Hahn sequen
refocuses the whole heteronuclear dipolar contribution.3

To a certain extent, this result should be a surprise: in strik
contrast with magnetic resonance, interactions due to nuclei
ing a different spinSgive rise to contributions which cannot b
visualized as simple “field inhomogeneities” (k IzSz-type con-
tributions) and which, as a consequence, are not inverted af
π pulse. In fact, it is worth noting that (see Table 4 for notatio

RH′I S
D R† = R

∑
k,l

(2Ãkl z1kz2k + B̃kl z1kx2k + C̃kl z1ky2k

+ Ãkl z2k − B̃kl x2k − C̃kl y2k)R†
3 A similar reasoning shows that, with the exception of an echo sign chan
an identical result is obtained with the alternative pulse sequence (π/2)0–τ–
(π )90–τ .
3
4

(
F (2)

kl + F (−2)
kl

)
syl − 3i

4

(
F (2)

kl − F (−2)
kl

)
sxl }

x-
m

ns

ce

ng
av-

er a
n)

=
∑
k,l

(2Ãkl z1kz2k − B̃kl z1kx2k + C̃kl z1ky2k

− Ãkl z2k − B̃kl x2k + C̃kl y2k) 6= −H ′I S
D [24]

even though no heteronuclear contribution affects (to sec
order) the echo amplitude att ′ = τ . Differences between the
NQR and the NMR cases are stressed if, as an alternative paR
indicates a 90◦ phase-shiftedπ pulse coming from a 90◦ rotated
second coil (see Section (iii)). Although no consequences
expected in an NMR Hahn-type sequence, the situation is ra
different in a quadrupole resonance experiment: in this ca
R = exp(−iπy1y2/2) and sinceRy1x2R† = −y1x2, Eqs. [22]
and [23] hold. On the other hand

R
[
H ′I S

D , y1x2
]
R† = 2i

∑
k,l

(Ãkl y1ky2k + B̃kl x1k − C̃kl y1kz2k),

[25]

leading to only a partial elimination of heteronuclear intera
tions.

Special attention will now be paid to the homonuclear p
of the conmutator [H ′D, y1x2] which, for convenience, has bee
expressed in Table 4 as a superposition of two contributions w
ge,complementary properties: after a (π )0 pulse is applied, terms
enclosed within the second summation remain unchanged and,
according to formula [23], lead to a homonuclear Hahn echo at
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t ′ = τ . This implies that the gradual echo decay asτ rises is
due to only a fraction of the homonuclear dipolar Hamiltonian
result which, once again, contrasts with that holding in magn
resonance.

The results obtained for homo- and heteronuclear con
butions may be summarized by writing the average nuc
polarization as

〈Ix〉HE ∝ − sin(ωQt)

{
1− 1

2
M ′I I

2 (t ′ + τ )2

− 1

2

(
M ′′I I

2 + M I S
2

)
(t ′ − τ )2+ · · ·

}
. [26]

In this expression,M ′I I
2 (M ′′I I

2 ) represents the homonuclea
component to the second moment due to terms of [H ′ I I

D , y1x2]
which do (not) satisfy Eq. [23]. Since squares of spin-1/2 oper-
ators are proportional to the identity matrix, explicit expressio
for each factor in the above series may be obtained from Eq.
by rather simple calculations. After some algebra, one gets

M ′I I
2 =

1

NI

∑
k 6=l

b2
kl

32

{
33
(
1− 3γ 2

kl

)2+ 144γ 2
kl

(
1− γ 2

kl

)
+ 36

(
1− γ 2

kl

)2+ 81
(
α2

kl − β2
kl

)2
− 36

(
1− 3γ 2

kl

)(
α2

kl − β2
kl

)}
[27]

M ′I I
2 =

1

NI

∑
k 6=l

b2
kl

32

{
36
(
1− 3γ 2

kl

)2+ 360γ 2
kl

(
1− γ 2

kl

)
+ 36

(
1− γ 2

kl

)2+ 324α2
klβ

2
kl

}
,

whereαkl = sinθkl cosφkl , βkl = sinθkl sinφkl , and γkl =
cosθkl are the direction cosines of the internuclear vector
is worth noting that

M I I
2 = M ′I I

2 + M ′′I I
2 = 1

NI

∑
k 6=l

b2
kl

32

{
69
(
1− 3γ 2

kl

)2
+ 504γ 2

kl

(
1− γ 2

kl

)+ 153
(
1− γ 2

kl

)2
− 36

(
1− 3γ 2

kl

)(
α2

kl − β2
kl

)}
[28]

in complete agreement with the result obtained by Abrag
and Kambe (4) by means of an explicit matrix representatio
of spin-3/2 operators. Also in accordance is the heteronuc
contribution, which results4

M I S
2 =

1

NI
S(S+ 1)

∑
k overI
l overS

b2
kl

{
1

2

(
1− 3γ 2

kl

)2+ 6γ 2
kl

(
1− γ 2

kl

)
+ 3

2

(
1− γ 2

kl

)2}
. [29]
4 Factor 3 in the last term of Eq. [12] in Ref. (4) probably comes from a typing
mistake.
RILES
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Case II: Solid-echo sequence((π/2)0–τ–(π/2)90–τ ). Orig-
inally designed for refocusing the homonuclear part of the (s
lar) dipolar Hamiltonian in the presence of a high magnetic fi
(5), the NQR sequence induces partially different effects. In
formalism discussed, the second pulse should be represen

R= e−i π4 y1x2 [30]

and, consequently,

ˆy1x2 = ˇy1x2 = y1x2. [31]

After replacing in Eq. [21], the following is found for the solid
echo sequence:

〈Ix〉SE(t) ∼= sin(ωQt)Tr

{
(y1x2)2+ (t ′2+ τ 2)

2
[H ′D, y1x2]2

+ t ′τ [H ′D, y1x2]R[H ′D, y1x2]R†
}
. [32]

This expression leads now to the relation

R[Tl D , y1x2]R† = −[Tl D , y1x2] [33]

for easily detecting refocused contributionsTl D in H ′D. After a
careful examination, it is found that, contrasting with Case
complementary fraction of the homonuclear part is now re
cused by the solid-echo sequence (first summation in Tabl
A tedious but straightforward calculation leads in this cas
the formula

〈Ix〉SE ∝ sin(ωQt)

{
1− 1

2
M ′I I

2 (t ′ − τ )2

− 1

2

(
M ′′I I

2 + M I S
2

)
(t ′2+ τ 2)+ · · ·

}
, [34]

where M ′I I
2 ,M ′′I I

2 , and M I S
2 have the same meaning as

Eq. [26]. As found in magnetic resonance, Eqs. [26] and [
provide complementary experimental information although
this case, homo- and heteronuclear contributions to the se
moment cannot be independently determined, at least by m
of only these two sequences. At first sight, the high comp
ity of the homonuclear dipolar Hamiltonian (Eq. [11]) make
a rather difficult task to decide whether a different set of pu
sequences exhibiting a better performance could be found. H
ever, this topic deserves a careful examination and will prob
be the subject of a future study.

As a final remark, it should be pointed out that, as infer
from Eq. [28], the contribution to the homonuclear second m
ment due to an arbitrary pair of identical nuclei depends on

azimuthal angleφ between the internuclear vector and the coil
axis. In other words, the resonance linewidth of a single-crystal
sample depends on its relative orientation to the coil axis, even
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FIG. 1. (a) Virtual single-crystalline sample during an NQR experime
After an rf pulse, the nuclear polarization oscillates along the coil axis direct
(b) Mutual dipolar interactions are slightly different if the sample is rotated.

if it is assumed (as in this study) that the electric field gradien
the nuclear site is axially symmetric. This fact simply stresses
tensorial nature of quadrupolar interactions and, in this se
pictures in Fig. 1 may serve as a helpful guide. Contrast
with the magnetic resonance situation, the nuclear polariza
following an rf excitation pulse does not precess around the p
cipal direction of the electric field gradient (z axis) but it rather

oscillates (6) along a direction parallel to the coil axis (x axis).
A rotation of the crystal aroundz therefore alters the mutua
nuclear induction during the normal evolution of the spin p
AR QUADRUPOLE RESONANCE 195

t.
on.

t at
the
se,

ing
tion
rin-

larization and, consequently, modifies the resonance linew
(see Fig. 1). However, this effect should hardly ever be detec
the contribution to the second moment due to theφ-dependent
part (last term in Eq. [28]) is not greater than 10%. Due to
presence of uncompensated contributions, this proportion
siderably increases if active moments for each pulse sequ
are separately analyzed (Eq. [27]). Even in this case, the g
variety of pairs of atoms to be considered in a crystal allows
to estimate that, on average, linewidth variations remain out
observation, at least for standard systems.
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